
MANAGING IN MAYBERRY: AN
EXAMINATION OF THREE
DISTINCT LEADERSHIP STYLES

Near the Blue Ridge Mountains in North
Carolina, not far from where you think it
should be, there really is a town called
Mayberry.

Although the main highway bypassed the
town years ago, the namesake for the
popular 1960s television series is still a
bustling community, and a fair amount of
traffic enters Mayberry’s downtown from
the north on the US Highway 52 business
spur every morning. In town for a week of
consulting work, we were able to observe
the recent road construction along that route and watched a trio of local
citizens demonstrate their own unique management styles. Let’s take a
look at how these characters traffic management closely parallels common
styles of software project management.

When road work just north of town closed Business 52, all the traffic
entering town from the north had to take the 52 bypass around to the west
side of town and enter the downtown on Key Street. Unfortunately, this
meant traffic would have to make a left turn onto Key Street, crossing fairly
busy east-west traffic (see Figure 1).

Figure 1

The town council feared that during the morning rush the traffic waiting to
make the left turn onto Key Street would back up on the southbound off-
ramp all the way to Highway 52 itself. This could cause a serious accident,
since Highway 52 has a 65 mph speed limit. So the council decided to
station one police officer and one or two rescue squad volunteers at the
intersection to make sure that traffic on the ramp did not back up.

THREE APPROACHES TO MANAGING
Being a take-charge guy, the officer on duty (we’ll call him Barney) arrived
at the scene Monday and quickly sized up the situation. He decided that
what was needed was a traffic light at the intersection of Key Street and
the ramps. Since it would take the county months to approve a light, he
decided to operate as a “human traffic light,” directing traffic manually.
Each direction got its turn: westbound Key (including left turns onto the
southbound ramp), then eastbound Key (including right turns onto the
southbound ramp), then the off-ramp (which could turn either way onto
Key). Barney’s plan didn’t actually work all that well. Traffic stalled in both
directions on Key Street. And there were a couple of close calls on the
ramp; traffic backed up almost onto Highway 52 once when Barney let a
few cars turn left onto Key Street. By the end of rush hour he was hot,
tired, and a little discouraged, and he had written a fistful of citations to
drivers for making unmentionably rude gestures at a law enforcement
officer.

On Tuesday, one of the rescue squad volunteers (a helpful local woman
known as Aunt Bea) said she knew how to take care of the situation. She
figured that traffic could probably take care of itself as long as drivers didn’t
have to cross each other’s paths. So she let traffic go both ways on Key
Street, and let people make right turns onto and off the ramps. When
somebody had to turn left, she’d stop the other lanes and let them go. Aunt
Bee’s approach worked better than Barney’s (at least nobody made rude
gestures at her), but there was still a lot more congestion than we
expected, and by the end of rush hour Bee was glowing profusely.

On Wednesday Sheriff Andy showed up, bringing a lawn chair and a
thermos of lemonade. He set up the lawn chair on a shady spot from which
he could see the intersection and a fair way down the off-ramp, and sat
down to sip lemonade. When traffic started to back up on the ramp, he got
up, stopped Key Street traffic, and let the ramp empty; then he went back
to his lemonade. Other than that, Andy pretty much didn’t seem to do
anything. Despite his apparent inaction, the intersection just seemed to
work. People were calm and relaxed, with the drivers making right turns
creating breaks for others making left turns, and everything worked a lot
like it did before anyone showed up to help—just a little better.

Putting on our consultant hats, we realized we’d just witnessed three
distinct styles of management—Barney’s micromanagement, Aunt Bee’s
motherly management, and Andy’s masterly management. Since these
styles are also common in software project management. Let’s look at
each of them in more detail, and see what we can apply to our own
software projects.

A QUESTION OF STYLE
Each of our managers made different assumptions that shaped their
style—in particular, assumptions about the people being managed, and
about the role of the manager. These assumptions determined how they
approached the critical activities of managing. In his book, Quality
Software Management, Vol. 1: Systems Thinking, Jerry Weinberg
highlights five critical activities:

1. understanding the problem to be solved,
2. planning the solution approach,
3. observing what the people being managed are actually doing,
4. using rules and process models to determine what to do next, and
5. taking action to guide the group toward its goal.

Together these activities form a feedback system that “steers” the project
team. How they are executed (i.e., what the manager defines as the
problem, how the manager plans, what observations get made, which rules

get followed, and how the corrective actions get taken) makes all the
difference—determining just where the team will go, how the team
members will feel about the software project as a whole, and ultimately
how satisfactory the results will be.

MICROMANAGEMENT
Barney practiced micromanagement, which is based on the assumption
that the manager has to see to it that everything gets done. Most
micromanagers don’t deliberately meddle out of a need to be in control;
they’re just operating under the assumption that if they don’t do it, it won’t
get done. Micromanagers also tend to make the related assumption that
those being managed will do what they’re told to do; no more, no less.

These assumptions describe machines better than they do humans.
Indeed, when Barney said we needed “human traffic lights,” he was
describing a situation in which both the manager and those being
managed were more mechanical than human. Perhaps this is why so
many good programmers become micromanagers when they get their first
promotion—they’re just “programming” the “bio-robots” who work for them!

Using Weinberg’s model, we can see how Barney’s assumptions defined
his view of the critical management activities:

1. The problem to be solved was to personally make sure everything
was done in an orderly fashion.

2. The plan that followed was for Barney to pretty much do everything

himself. He would personally direct the movements of each and every
vehicle. This meant that the plan had to be simple enough that he could
be in control of its execution at all times.

3. Even with the simple plan, Barney was far too busy directing traffic to

observe much. Standing in the middle of the intersection, he wasn’t in
the right position to see up the ramp when traffic began to back up onto
Highway 52.

4. Even if he had made better observations, his manager-centered

process model didn’t allow him to do much. The underlying
assumption that he was personally responsible for each and every car
going through the intersection meant that he couldn’t delegate much –
he couldn’t count on the drivers to do anything other than what he told
them to do.

5. Barney’s actions were pretty limited; because he had to control each

vehicle, he couldn’t leave his spot in the middle of the intersection. In

the end, he couldn’t do much beyond try harder at what he was already
doing—waving his arms more frantically at the folks, in the hopes that
they’d get through faster.

Because the manager must make (or at least approve of) all decisions,
only one thing happens at a time and everything else lines up waiting for a
turn. When simplicity, centralized information, and oversight are turned
from virtues into vices, it creates a choke point that affects project planning
and execution.

Simplicity Since the entire project plan must be under the control of the
manager at all times, the plan must be simple enough that a single person
can comprehend it in its entirety. This sets an upper bound on project
complexity—if the problem to be solved is beyond this bound, the manager
has to simplify it somehow (e.g., letting traffic go in only one direction at a
time). This serialization of activities is a common simplification in
micromanaged projects as well, and it wastes both effort and time. When
serialization isn’t enough, the manager may start leaving “non-essential”
activities out of the project plan. Micromanagers are notorious for over-
simplifying, to the point where their software project plans may leave out
something essential for a successful product launch.

Centralized information Since the manager is the only one who can
make a decision, it’s critical that he get lots of quality information about
how the project is doing. Unfortunately, the only observations allowed are
those that the manager puts in the project plan—but that manager’s far too
busy making each and every decision to actually observe much of
anything. So in practice, micromanagers are often flying blind, making
decisions on little or no actual information.

Oversight The need to get explicit approval for each action adds to the
amount of time required to accomplish tasks. So micromanagement tends
to be inefficient, with a lot of people waiting around for the manager to tell
them what to do next. The manager-as-bottleneck is a key structural
problem. The practice also leads to people problems, such as initiative
squelching. The manager’s assumption implies that the people being
managed have nothing to contribute beyond the functions defined for them
by the manager. What if the workers want to do something other than
follow the rules—because they see a better way or a problem with the
plan? Forget it. The micromanager will not allow it to happen. This creates
short tempers and long days for those who are micromanaged.

Most people don’t like this style of management. Some will respond with a
sort of dead, mechanical compliance, waiting dutifully for their next set of
instructions from the manager. Others may choose some form of subtle

rebellion, such as “working to rule”—following the manager’s instructions to
the letter, no more, no less, even when those instructions are clearly a
recipe for failure. And others will rebel more openly, taking advantage of
the manager’s continual distraction to get away with whatever they can.
Alas, these responses to micromanagement tend to set up a positive
feedback loop that reinforce the micromanager’s assumptions and leads to
even more micromanagement. Micromanagers tend to be very busy
people.

So, is micromanagement ever appropriate? Certainly, when the problem to
be solved is small enough for one manager to truly comprehend the entire
project plan, and the people doing the work are willing to follow each and
every command of the manager. While this situation can occur now and
then, it’s not very common in the software world.

A common cause of micromanagement is the newly promoted, technically
competent manager rushing in to help a floundering employee or rescue a
particular part of a software project. This creates a co-dependent dynamic
where the manager becomes the rescuer, and the employee becomes
helpless. This ensures that the next time there is a problem, the manager
will step in again, and so on, until something happens to break the pattern.

While micromanaged projects can (and often do) result in successful
product launches, it’s often more in spite of their management than
because of it. There ought to be a more efficient and less aggravating way
to handle the situation.

MOTHERLY MANAGEMENT
Aunt Bea chose a kinder, gentler style that we call motherly managing,
allowing the drivers to do some things for themselves, and helping them
when she thought they needed help. But her underlying assumption was
still pretty close to Barney’s: the people being managed might be able to
do a few routine things without being told, but all significant decisions—
especially when there was some form of contention or competition—were
still firmly under her control.

If the micromanager views the people being managed as machines, the
motherly manager sees them more like children, able to do a few routine
things but still needing protection from anything potentially dangerous. Like
the micromanager, the motherly manager is not necessarily malicious or
desperately in need of control. Aunt Bea had no great need to have power
over the drivers; she just knew that they couldn’t make major decisions
without her help. She simply couldn’t visualize the situation where one
person could be turning left into the gap created by another turning right,
because she couldn’t see who was controlling the relationship, and she

knew that two drivers certainly couldn’t cooperate without somebody to
coordinate them.

Aunt Bea’s motherly assumptions defined her view of the key management
activities:

1. The problem to be solved was something like “take care of the people
who have to cross other traffic.” Like Barney, she saw the problem in
personal terms; it was her problem, not the drivers’ problem.

2. Because Aunt Bea saw the drivers as human beings who could do a few
things for themselves, her plan was a bit less rigid than Barney’s. She
could allow at least a few routine things to happen in parallel, but under
exceptional conditions she would take full control of everything, which
meant reverting to serial execution.

3. Aunt Bea’s more distributed plan required somewhat more sophisticated
observations than Barney’s. She had to observe those situations in
which her help was needed—in particular, left turns. Notice that she
wasn’t observing whether people were having trouble making left turns;
her underlying assumption said that a left turn signal was a request for
help. Like Barney, she spent her time in the middle of the intersection, a
point from which she couldn’t see up the ramp very well.

4. Because of her motherly assumption that the people being managed
couldn’t handle any form of contention or conflict, Aunt Bea’s process
models dictated that she must personally resolve these things. So her
response to just about any out-of-the-ordinary condition was to stop
traffic and go back to taking turns.

5. Like Barney, Aunt Bee was working from a very limited set of actions, in
part restricted by her need to be in the position of control at the center of
the intersection. If those actions didn’t work, about all she could do was
more of what she was already doing.

Like micromanagement, motherly management can work when its
underlying assumptions are true and the problem and solution aren’t too
complex. Trouble is, most software development shops aren’t day care
centers, and most development is non-routine and requires that a lot of
conflicts be resolved. Interfaces, partitioning, decomposition, protocols—
these are all “left turns” in the view of a motherly manager, who must
personally make sure that everybody plays well together. This creates a
structural problem similar to micromanagement. Similar, but also different.
Since some work can take place independently under motherly

management, the manager is less of a choke point than in the case of
micromanagement.

But because the process is still highly manager-centric, the actual amount
of work that can be done in parallel is often less than expected. We end up
with a process that’s very nearly effective: almost parallel, relatively
observant, and coming awfully close to giving workers independent
responsibility:

Parallel (almost) Only pre-defined “routine” things can take place in
parallel. As long as traffic went straight ahead or turned right, Aunt Bea’s
plan seemed to work. But she couldn’t predict how many people would
want to turn left. When lots of people started turning left, her plan fell apart.
In the same way, the actual performance of a motherly-managed software
project depends heavily on just how much of the development is really
“routine” with no need for interactions or conflict resolution. If there are a
lot more “exceptions” than expected, a lot of developers working in parallel
according to the project plan may be sitting on their hands waiting for the
manager to make a decision. This can make a project plan that was
parallel in theory become serial in practice.

Myopic Motherly managers make more observations than micromanagers,
but they still confine those observations to specific conditions noted in the
project plan. If the conditions defined by the manager are in fact not the
key exceptions that need to be managed, the motherly manager will be
spending time and energy observing the wrong thing, while missing the
observations that are really necessary for project success.

Nannying Motherly management can be less oppressive than
micromanagement for the people being managed, because the “mother”
allows her “children” to do a few things on their own. The individual
developers can go ahead as long as they aren’t going against the flow or
getting into conflicts. But at the first indication that something non-standard
is going on, the whole process stops until the manager decides what to do.
The manager must handle all the decisions that really matter—and this
squelches the individual contribution to solving the overall problem just
about as effectively as micromanagement. There is a great deal of
variation here—a manager who views the employees as teenagers is less
openly controlling than one who views them as toddlers. Still, most of the
people who work in the software business have college degrees, and we
wonder if we’re making the best use of their expensive educations when
we manage them as though they were children.

If we are going to find a style that’s more efficient and effective than micro
and motherly, we must start by changing our underlying assumptions.
Barney sees the people being managed as machines to be programmed;

Bea sees them as children to be helped. Now let’s see what happens
when Andy views them as adult human beings.

MASTERLY MANAGEMENT
Andy took an approach that at first didn’t look like “management” at all. He
just sat in his chair, sipping lemonade and watching traffic on the Highway
52 off-ramp. When it started backing up badly, he strolled out into the
intersection, stopped traffic on Key Street, and let the off-ramp clear; then
he went back to his lemonade. He seemed to be “working” a lot less than
Barney or Aunt Bee, yet traffic flowed smoothly. We refer to Andy’s style
as masterly management — because of our three traffic controllers, only
he was truly the master of the situation.

The keys to Andy’s management style were his underlying assumptions:
that drivers are adults, that most of the time they can take care of
themselves, and that his role as a manager is to support these competent
adults so they can do the real work of getting themselves safely through
the intersection. This is vastly different from Barney’s and Aunt Bea’s
assumption. Andy felt secure enough about his own competence and the
drivers’ know-how that he could remove himself from the center of the job.

Because Andy did not place himself at the center of the management task,
he could be much more flexible and effective at the key management
activities:

1. Andy saw the problem to be solved as moving traffic efficiently and
safely through the intersection. He also realized that most of the time
this intersection didn’t need any help; people made turns here every day
without any supervision. What made this a unique problem that might
require some management intervention? The detour increased traffic on
the Highway 52 off-ramp, and that might, on occasion, cause traffic on
the ramp to back up onto the highway and cause a safety hazard. Notice
the difference—while Barney and Aunt Bea defined the problem in terms
of what they had to do, Andy defined the problem in terms of results,
independent of who actually “did the work.” By doing this, Andy
positioned himself to observe and “steer” the system that did work,
rather than as the person doing the work.

2. With his understanding of the real problem to be solved, Andy was able
to construct an effective plan for its solution. The drivers could be
responsible for getting themselves through the intersection. He and his
“management team” would monitor the off-ramp and make sure that it
could be emptied when (and if) it backed up far enough to pose a safety
hazard. While Barney might accuse Andy of not having much of a plan,
the fact is that Andy’s simple-looking plan actually allowed some very

complex things to happen. Because he didn’t attempt to control low-level
actions by the drivers, Andy’s plan delegated management work to
individual drivers. This allowed them to operate in parallel, which they
did—drivers waiting to turn left off the ramp took advantage of gaps in
traffic created by drivers turning right.

3. Now that he had both a problem statement and a plan, Andy could
identify which observations he needed to make. To keep traffic from
backing up onto Highway 52, he had to watch the ramp—not the
intersection. So he positioned himself off to the side, where he could see
the ramp. This is another critical difference in Andy’s style. Standing in
the middle of the intersection, Barney and Aunt Bea were taking in a
great deal of information—most of it irrelevant to solving the real
problem. They weren’t in the right place to make the observations that
really matter. Of course, Andy didn’t ignore what was happening in the
intersection—but he didn’t make the intersection his primary focus.

4. Andy’s management style used two process models. First, if traffic’s
backing up on the off-ramp, stop traffic on Key Street and allow the ramp
to drain. Second, if something blocks the intersection, get it out of the
way immediately. The rest of the time, Andy’s process model says “let
the drivers take care of themselves.”

Both of these models are more subtle than they look. The first model
allows Andy to do some fine-tuning as the morning progresses. How far
up the ramp is “too far” for traffic to back up? At first he took a
conservative approach, draining the ramp when it was backed up about
halfway to the highway. Later, after observing how quickly Key Street
traffic could be stopped to drain the ramp, he changed his definition of
“too far” to something more like three-quarters of the way up the ramp.
This meant even fewer interventions were needed, because often traffic
would back up to the halfway point and then drain back down by itself.

The second model contains a flexible definition of just what triggers
action. Andy’s looking for a symptom, which could have a variety of root
causes. If something blocks the intersection (e.g., a driver too timid to
turn left), Andy’s model will handle it.

5. Finally, Andy took a lot less “overt” action than either Barney or Aunt
Bea. Most of the time it appeared that he was doing nothing at all. Yet,
when action was required, he knew what action was appropriate and
effective. But it would be wrong to say that Andy’s actions were simpler
than Barney’s or Aunt Bea’s. In fact, his infrequent interventions required
more skill. After all, Barney and Aunt Bea were already standing in the
middle of the intersection, and had the drivers’ complete attention. Andy
had to enter an intersection full of moving vehicles, get the drivers’

attention, temporarily interrupt their self-management, get the drivers to
carry out his instructions, and finally re-establish the self-managing
system. This is a task requiring some skill.

Like the other two styles we’ve discussed, masterly management works
when its underlying assumptions are valid. In software development,
where the people being managed are skilled, competent, educated adults,
these assumptions are usually true. Masterly management, therefore,
addresses the structural and behavioral problems we saw with micro and
motherly management:

The delegation inherent in the plan means that most contentions and minor
conflicts get solved without the manager’s intervention, so most of the time
the people aren’t waiting for the manager’s attention. When a problem
does require the manager’s attention, that problem doesn’t have to wait in
line behind a bunch of minor conflicts.

This support for parallel activities means that masterly management can
work with projects that are just too complicated to be understood in all their
detail by a single manager—and most software projects would fall into that
category.

Because the people being managed are also delegated a self-
management job, they are able to contribute observations that a micro or
motherly manager is likely to miss.

Masterly management involves managing the project rather than the
individuals. Most of the time, the people doing the work are free to pick
their own methods within some basic guidelines (for instance, driving on
the correct side of the road, or using the corporate standard tool set). This
allows creative energy that might otherwise be spent on finding ways to
“beat the system” to instead go toward creating profitable products.

In short, a masterly manager like Andy observes and steers a system. If
the problem is well understood, the plan is appropriate, and the people
doing the work are competent, the controller often doesn’t need to do
much. Unlike micro and motherly managers, masterly managers spend
most of their time in observation and thought rather than in frantic activity.
But don’t be fooled—when Andy was sitting in his chair sipping lemonade,
he was more effectively in control of the situation than either Barney or
Aunt Bea.

If masterly management is so good, why don’t we see it more often?
Because in some ways it’s unsettling, especially for the manager:

Looks can be deceiving Masterly managed projects often give a certain
appearance of chaos. When Andy managed the intersection, traffic was

turning every which way, which was disturbing compared to the neat and
orderly behavior when Barney was in charge. However, more traffic moved
through the intersection, and did so more safely, under Andy’s chaotic-
looking management style. Many software projects already look like chaos.
Will going to masterly management make them more so? We doubt it; we
suspect that much of the apparent chaos in software development comes
from resistance to micro and motherly management.

Power is as power does Masterly management requires a different
mindset. Most people associate the word manager with the word power.
Yet moving from micromanagement to masterly management involves
giving up much of the apparent power and authority of the managerial
position, and giving it to the people being managed. The masterly manager
has more real power, according to writer Barry Oshry (quoted in
Weinberg’s book Becoming a Technical Leader), if we define power as the
ability “to act in ways which enhance the capacity of our systems to thrive
and develop in their environment.”

Measuring what counts In some organizations (particularly those where
micromanagement is the rule), a masterly manager may have a hard time
getting promoted. After all, you won’t be doing much visible managing
compared to the micro and motherly managers around you, and it will be
easy for the micromanager who makes promotion decisions to conclude
that the project succeeded in spite of your “inaction,” not because of it.

But masterly management also has rewards. Masterly managers often
don’t have to work as frantically as micro and motherly managers. As a
masterly manager, you’re less likely to find yourself in the office at three in
the morning, trying to resolve yet another trivial issue. And you’ll get the
satisfaction of knowing that you’re truly an effective leader when the
project team says, “We did this ourselves.”

MICRO, MOTHERLY, OR MASTERLY MANAGEMENT
The best way to determine your management style is to ask questions and
observe what is happening.

Do the people reporting to you scatter like leaves in the wind when you
show up? Do you feel like they are performing to the letter of the law and
not the spirit? Do you jump in and start coding when there is a problem? If
so, you’re probably micromanaging.

Do you organize workflow for a minimum of interaction so things go
smoothly in the team? Do you step in and try to make everything all right
for everybody? In crunch mode, do you revert to micromanaging? Your
heart may be in the right place, but you may be in motherly managing
mode.

Do you spend a fair amount of time observing what is happening, thinking
about the impact the events will have on your team and project, and
planning what to do? If so, you may be masterly managing.

If you would like to change your management style, there are some
important questions to think about. First, how did you come to have your
current management style? For most of us, the way we manage is
influenced by the people who’ve managed us, and by the environment in
which we manage. Acknowledging these influences, and the constraints of
your current work situation, may help you determine whether it’s time for
new models. It’s important, too, to examine how you feel about your style.
If you’re happy with the status quo, change may not be necessary. But if
you feel overworked, and seem to be constantly fighting fires, then maybe
a change is in order.

And finally, what would you like to have happen? We saw that Barney,
Bea, and Andy’s view of the “problem at hand” shaped their unique
responses, and the same is true for you. Once you know what you would
like to have happen, you can create and implement the plans that will allow
you to achieve your goals and keep your traffic running smoothly.

	

	

	

You can find a number of my articles published at Better Software magazine, StickyMinds.com,
AgileConnection.com and techwell.com.

This article was originally published in STQE, Volume 3, Issue 1 (January/February 2001). About
every two years someone finds it and tweets about it.

